WSDL 2.0 Message Exchange Patterns: Limitations and Opportunities

*

Jorg Nitzsche, Tammo van Lessen, and Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart
Universititsstrale 38, 70569 Stuttgart, Germany
{joerg.nitzsche | tammo.van.lessen | frank.leymann } @iaas.uni-stuttgart.de
http://www.iaas.uni-stuttgart.de/

Abstract

The Web Service Description Language (WSDL) pro-
vides means to describe functional aspects of a ser-
vice in a Service Oriented Architecture (SOA) based
on Web Service technology. In contrast to its predeces-
sor (WSDL 1.1), WSDL 2.0 does not define a fixed set of
operation types but provides for a generic mechanism to
define an operation by means of message exchange pat-
terns (MEPs). In this paper we compare the expressivity
of MEPs in general with other work and formalisms in
the field of service interaction. Furthermore, we identify
new MEPs and extend the template used to define MEPs
to allow expressing more complex patterns. We give a
refined definition of MEPs based on a detailed discus-
sion and discuss how WSDL and the MEPs in particular
can be combined with the choreography approach.

1. Introduction

The Web Service Description Language (WSDL)
[6,17] is part of the WS-* standard stack which com-
prises a set of composable specifications and standards
used to define Web Services (WSs) [21], the most pop-
ular implementation of a service-oriented architecture
(SOA) [19]. SOA is an architectural style where soft-
ware components that provide a piece of functionality are
encapsulated as agnostic services. These services com-
municate with each other via messages they exchange.
There are several approaches to describe the message ex-
change among services. Choreographies [8] describe the
communication of services (i.e. different participants)
from a global point of view, i.e. a choreography de-
scription captures the overall interaction including the

*The work published in this article was partially funded by the
SUPER project (http://ip-super.org) under the EU 6th Framework
Programme Information Society Technologies Objective (contract no.
FP6-026850)

complete message exchange of every single participant
of the choreography. Orchestrations [8] however, de-
scribe the message exchange of a single participant only.
WSDL describes the functional aspects of a service and
is also focused on a single participant. It defines the mes-
sages a service is able to send and receive and how these
messages are related by grouping them into operations.
Compared to orchestrations and choreographies, the re-
lation between messages in WSDL is not described by
specifying their potential ordering using a formal spec-
ification, but their grouping and classification as input,
output or fault. In WSDL 1.1 [6] there are four different
operation types. The operation types could be mixed up
inadvertently with procedure calls, having a return value
or not. Recently, WSDL 2.0 [17] has been standard-
ized. It provides for a generic mechanism to describe
operation types by means of message exchange patterns
(MEPs). Thus, it removes the pretended dependency
of service descriptions to imperative programming and
fosters a message orientated way of thinking which is
postulated by SOA instead of thinking in terms of (re-
mote) procedure calls. In this paper we examine the
existing predefined MEPs given in the adjuncts to the
WSDL 2.0 specification and the W3C Note “Additional
MEPs” [3] and discuss the expressivity of the W3C
proposed approach to describe MEPs. We extend this
approach to enable expressing more complex MEPs and
discuss how WSDL and the MEPs in particular can be
combined with the choreography approach. Based on
this discussion we give a refined definition of MEPs.
The remainder of the paper is structured as follows.
Related work in the field of service interaction is pre-
sented in section 2. Section 3 presents WSDL and ex-
plains MEPs in detail. A comprehensive sample scenario
is given in section 4. Section 5 identifies two new MEPs
in the sample scenario and shows how the W3C pro-
posed approach can be extended to express these patterns.
A detailed discussion about the needed expressivity of
WSDL 2.0 MEPs in section 6 is followed by a definition

of MEPs in section 7. Section 8 concludes the paper and
gives directions for future work.

2. Related Work in Service Interaction

A choreography language enables capturing the in-
teraction between services from a global point of view.
Such a language typically provides means to describe ei-
ther interaction models or interconnection models [8]. In-
teraction models describe the order of the messages that
are exchanged directly. Corresponding specifications
facilitating interaction models are e.g. the Web Services
Choreography Definition Language (WS-CDL) [14] and
Let’s Dance [10]. Interconnection models do not order
the messages directly but connect orchestrations with
each other. Thus, they provide indirect ordering of the
messages via the control flow of the connected orches-
trations. Languages that provide support for modeling
interconnection models are BPMN [16] and the Busi-
ness Process Execution Language for Choreographies
(BPEL4Chor) [15]. WS-CDL and BPELA4Chor are tailor-
made for WS-* and WSDL 1.1 in particular, BPMN and
Let’s Dance are high level description languages inde-
pendent of any technology.

Orchestration languages describe the interaction of
services from the point of view of a single participant
similar to WSDL. In contrast to choreography languages
that are only used for modeling interactions, orchestra-
tion languages like the Business Process Execution Lan-
guage (BPEL) [1] can be used to create executable mod-
els that can be enacted in an orchestration engine. Dur-
ing the enactment of a process model the orchestration
engine then actually realizes the modeled interaction.

The SOAP Service Description Language (SSDL)
[20] describes a message exchange from the point of
view of a single service (like WSDL). SSDL abstracts
from the notion of an operation and only describes mes-
sage exchanges. It provides several plug-ins that define

This pattern consists of [number] messagels, in order] as follows:

[enumeration, specifying, for each message]
A[n optional] message:
1. indicated by an Interface Message Reference component whose
message label is "flabel]" and direction is "[direction]"
2. [received from|sent to] ["some" if first mention] node
[node identifier]

This pattern uses the rule [fault ruleset reference].

An Interface Operation using this message exchange pattern has a

message exchange pattern property with the value "[pattern IRI]".

Listing 1. WSDL 2.0 MEP template [18]

the message exchange either based on the WSDL MEPs,
rules, or using process algebra. It implies the use of
SOAP [13] and WS-Addressing [5].

In [2] a collection of patterns of service interaction
is presented which allows benchmarking expressibility
of modeling languages for service interaction, such as
choreography and orchestration languages. The patterns
reach from simple interactions like sending a message or
receiving a message to complex interactions that involve
multiple messages and different parties.

3. WSDL Operation Types / Message Ex-
change Patterns

In a WS world the Web Service Description Lan-
guage is used to describe the functional aspects of a
service, i.e. the messages the service is able to send and
receive. This message exchange is described from the
service’s point of view.

WSDL 1.1 has been published as a note by the
World Wide Web consortium (W3C)! in 2001. It enables
describing both the messages themselves and the seman-
tics of the messages, i.e. how the messages are related.
The relation is defined by grouping the messages into
operations which are again grouped into so called port
types. WSDL 1.1 defines a fixed set of operation types:
(1) request-response (the service first receives a request
and then sends a response or a fault), (ii) one-way (the
service only receives a message), (iii) solicit-response
(the service sends a request and receives a response or
a fault) and (iv) notification (the service sends a mes-
sage). The reason why WSDL 1.1 specifies exactly these
four operation types is that Web Service technology has
been developed for the purpose of Enterprise Applica-
tion Integration (EAI) [9]. Basic scenarios in application
integration are (i) receiving a message triggering a re-
sponse message (WSDL operation type request-response
or solicit-response, respectively) and (ii) receiving a mes-
sage not triggering a response (WSDL operation type
one-way or notification, respectively). For these scenar-
ios the WSDL operation types do not specify whether
they are blocking or non-blocking. However, a com-
mon misperception is that the MEPs request-response
and solicit-response are always blocking, i.e. that they
are different incarnations of a remote procedure call
(RPC). But, an RPC is just a special case of the more gen-
eral MEP request-response/solicit-response. Since the
WSDL specification is terse, two of the operation types
were interpreted differently by some vendors: solicit-
response and notification. Notification for instance was
implemented point-to-point by one group of vendors and

Thttp://www.w3.org/

one-to-many by another group of vendors. Thus, the Ba-
sic Profile [12] of the WS-Interoperability Organization?
defines that these operation types must not be used. Con-
sequently, only two operations types from WSDL 1.1
are used in practice, one where a message is received
only and another where receiving a message triggers a
response.

WSDL 2.0 introduces a generic mechanism to de-
scribe operation types, called message exchange patterns
(MEP). A MEP defines the operation type of a WSDL
operation by describing the order in which messages that
belong to the same operation are exchanged following a
predefined template (see Listing 1). In the template, the
bracketed items indicate a replacement operation. The
received from and sent to are always from the point of
view of the service, and participating nodes other than
the service are implicitly identified as the originators of
or destinations for messages in the exchange. A MEP
in an operation is identified via the attribute pattern (see
Listing 2). In contrast to WSDL 1.1, an operation can
have multiple inputs, multiple outputs, multiple incom-
ing faults and multiple outgoing faults that define the
data types used during the message exchange. In prin-
ciple a MEP can define an arbitrary message exchange
of a service with (a) partner service(s) which fosters
the change from a procedural way of thinking to a mes-
sage oriented way. Thus, MEPs are an important step
towards a loosely coupled SOA. Eight MEPs are defined
by official W3C documents [3,17,18].

* In-Only — The service receives a message.

* Robust In-Only — The service receives a message
and in case of a fault it returns a fault message

* In-Out — The service receives a message and returns
a response message

* In-Optional-Out — The service receives a message
and optionally returns a response message

¢ QOut-Only — The service sends a message

* Robust-Out-Only — The service sends a message
and in case of a fault at the partner service it re-
ceives a fault message

¢ Out-In — The service sends a message and receives
a response message

* Out-Optional-In — The service sends a message and
optionally receives a response message

All of these patterns describe a bilateral message
exchange between the service and a partner service from
the service’s point of view. The descriptions of the pat-
terns identify the partner service using a node identifier
(see Listing 1). This way the ambiguity of operation
types is resolved. The MEP out-only for instance de-
fines a point-to-point interaction and thus provides the
specification for exactly one of the interpretations of the

Zhttp://www.ws-i.org/

<documentation />x
[<input/>|<output/> | <infault/>|<outfault/>] x
</operation>

Listing 2. Definition schema for WSDL 2.0

operations

WSDL 1.1 operation type notification.

Identifying a partner service explicitly, enables
defining a MEP that involves different partners, i.e. dif-
ferent nodes. But it is not defined what it means when
several different partner nodes are involved in a message
exchange. These nodes could be several implementa-
tions of the same type of service, i.e. different instances
of the same node type or they could be nodes of different
types. Additionally, the template is not precise enough
to actually define a contract between two or more parties:
patterns with optional receiving messages for instance
are underspecified because it is not defined how services
that implement the MEP behave. They could for instance
wait for a certain period until the message or the fault
arrives. However, the exact behavior is not specified.

4. Sample Scenario

The scenario presented in Figure 1 involves several
node types as well as several instances of one node type.
Different node types are (i) the requester which is also
the initiator of the overall communication, (ii) a provider
and (iii) a banking service. There exist several instances
of the provider node type.

In the first step the requester carries out a request

request for bid

Provider

Banking

Requester

Figure 1. Sample scenario.

Node Set N

o __8N(1)N(2)

Service

Figure 2. Scenario “request-for-bid”.

for bid. Therefore he sends out a message to several
providers and waits for a certain time to receive response
messages from the providers. Then he selects one of the
providers and orders a product. He sends the product
details to the provider which in turn sends a request for
payment to the requester. Then the requester sends a
message with the credit transfer details to a banking
service. The banking service notifies the provider that
the amount has been paid and the provider delivers the
goods and sends a message to acknowledge that he has
received the money.

5. Realisation

These kinds of complex scenarios involving several
parties are typically modeled using the choreography
approach. The state-of-the-art for execution is that all
the information about the partner services is pushed to
the participants, i.e. they know where to send a message
and from which node to receive a message which is also
expressed in their interfaces.

5.1. State-of-the-art (WSDL 1.1)

In WSDL 1.1 the expressivity of an operation is
limited. The communication mode of an operation is
always bilateral, i.e. there are always two nodes involved
in the message exchange: the service itself and a partner

Node N

Service

Node M

Figure 3. Scenario “request-with-referral”.

node. Therefore, when capturing the knowledge that a
service communicates with several nodes, a higher level
language such as BPEL is needed. BPEL describes a
flow between WSDL 1.1 operations. For communication
purposes it defines so called partner links, one partner
link for every node type. Information about different
instances is hosted by the process instance via endpoint
references stored in variables.

5.2. Using WSDL 2.0 MEPs

WSDL 2.0 enables distinguishing between different
nodes. Thus, WSDL 2.0’s expressivity allows describing
the service’s part of the choreography at the operation
level. Taking the sample scenario above, we can find
three different MEPs from the point of view of the re-
quester of which the first and the third are so far not
defined for WSDL 2.0: (i) a request-for-bid that is com-
posed of a one-to-many-send [2] and a one-from-many-
receive [2], which involves multiple instances of the
provider role/type (see Figure 2); (ii) a send/receive [2]
that involves one instance of the provider role/type; and
(iii) a request-with-referral [2] that involves the banking
service and the provider (see Figure 3).

The description of the MEP request-for-bid is pre-

~
This pattern consists of multiple messages, in order, as follows:
~
For each node i of a set of nodes N This pattern consists of exactly two messages, in order, as follows:
A message: A message:
— indicated by a Interface Message Reference component — indicated by a Interface Message Reference component
whose {message label} is "Out" and {direction} is "out" whose {message label} is "Out" and {direction} is "out"
— sent to node N(i) — sent to some node N
An optional message: A message:
— indicated by a Interface Message Reference component — indicated by a Interface Message Reference component
whose {message label} is "In"and {direction} is "in" whose {message label} is "In" and {direction} is "in"
— received from node N(i) — received from some node M where M <> N
This pattern uses the rule 2.2.1 Fault Replaces Message. An This pattern uses the rule 2.2.1 Fault Replaces Message. An
operation using this MEP has a {MEP} property with the value operation using this MEP has a {MEP} property with the value
"http.//www.iaas.uni—stuttgart.de/2007/10/wsdl/rfb". "http.//www.iaas.uni—stuttgart.de/2007/10/wsdl/rwr".
J y

Listing 3. MEP "request-for-bid"

Listing 4. MEP "request-with-referral”

sented in Listing 3. To enable distinguishing between
different instances of a node type and different node
types we have to extend the pattern description template
with the notion of a set of nodes (indicating that all
nodes within this set are of the same type), an index to
identify a node within the set of nodes, and a for each
statement to enable iterating the set. Listing 4 shows
the description of the MEP request-with-referral. It can
be observed, that the WSDL MEP does not describe
the whole request-with-referral scenario, but only those
messages received or sent by the requester. It remains
undefined how the two different nodes (N and M) com-
municate with each other, i.e. whether they communicate
directly (like in Figure 3) or via other nodes.

6. Expressivity of MEPS

As shown, the MEPs in WSDL can in principle
express the communication with different node types and
multiple instances of one node type. However, MEPs are
not expressive enough to define the overall interaction of
a choreography like the one presented in Figure 1. It can
only describe the part of the interaction that is visible
from the point of view of a single service.

In the preceding section we presented how a chore-
ography description can be implemented in a traditional
way. The knowledge about the sequence and destination
(end point references (EPRs) of partner services) of mes-
sages is pushed to the participants. This is also reflected
in their WSDL descriptions, at least on an abstract level,
by describing the sequence of messages and whether
they have the same or different destinations.

However, there is a second option how the choreog-
raphy may be realized. The concrete information about
the participating services, i.e. their EPRs is hosted by
a middleware component, the service bus [4, 7] that is
aware of the whole choreography. During execution,
services hand over messages to the service bus which in
turn delivers the messages to the recipients as defined by
the choreography. Still, the WSDL descriptions of the
services may define the sequence of messages the ser-
vice will send and receive, and whether messages have
to be exchanged with one single node type or multiple
node types; this indicates in which choreography the
services can be involved in. However, this information is
not needed during execution because the whole message
exchange is managed by the service bus.

When using such a choreography-aware service bus
it is also possible, that a participating service does not
care if only a single partner type (i.e. node type) is in-
volved into its message exchange or if a third party or
even more parties are included. In case a service does
not care how many different parties (i.e. different node

types) are involved in its message exchange, the service
would not define any nodes in its MEP. As a conse-
quence, the service could be used to implement any role
in a choreography where the given sequence of messages
is needed, no matter where these messages are actually
sent and from where the messages are received. This
kind of service that is completely agnostic about its part-
ner services nicely fits into the paradigm of a loosely
coupled system. Note that this is only possible when
using a bus that is choreography-aware. Such a service
bus hosts the choreography definition used to determine
the actual partner to which a message must be delivered.

7. Definition of MEPs

There are two distinct ways to use MEPs when de-
scribing the interaction of a service when using WSDL.
The notion of an operation and of MEPs in particular can
be reduced to one message, i.e. sending or receiving a
message, which corresponds to the WSDL 1.1 operation
types one-way and notification. The relations of these
single messages can be defined using languages like
BPEL or BPEL!#" [11]. By using WSDL 2.0’s MEPs
it is also possible to describe the complete interaction
of a service including the message exchange with all
partner services within one single operation. In this case,
an operation may consist of thousands of messages and
dozens of partners. However, in both cases no added
value is achieved by the notion of an operation, because
no reusable unit of a higher complexity is defined:

* Single message operations can be reused but do not
define a unit of higher complexity; single messages
exist without the notion of an operation.

* Message exchanges that specify the complete inter-
action of a service define units of higher complexity,
but they are foo complex to be reusable.

To achieve added value via the notion of an opera-
tion it should be both: a unit of higher complexity that
deals with a certain kind of problem and it should also be
reusable. As a consequence, a service can be involved in
scenarios reaching from a very basic interaction between
two parties to complex scenarios where multiple node
types and multiple instances of a node are included.

Following these principles we have identified the
MEPs request-for-bid, solicit-response, and request-
with-referral in the example given in Figure 1 and not
the MEP “place a request for bid, order something from
a chosen provider and include a third party during pay-
ment”. In the last section we showed that it is necessary
to identify the partner nodes, different node types and
different instances of a node type in a MEP, when imple-
menting WS in a traditional way, i.e. without extensive
middleware support. When implementing a scenario

using a choreography-aware service bus it is possible to
define the MEPs without defining different node types.
Constraining the partner types of the MEP to a special
choreography hampers reuse of services. However, this
is only possible if the service itself does not have con-
straints on the partners he interacts with.

As a result, we come to the following definition: “A
message exchange pattern (MEP) specifies in a reusable
manner the ability of a service to receive and/or send
messages. It describes the set of exchanged messages
in terms of their order and multiplicity, i.e. whether a
message is send to or received from a single node or
whether a message is sent to or received from multiple
instances of a node. Optionally, also different node types
can be identified.”

8. Conclusion

In this paper we discussed the nature of WSDL 2.0
MEPs in depth. We discussed the expressivity of the
template given in the specification for describing MEPs
and extended it to facilitate distinguishing different node
types and instances of node types. We identified MEPs
missing in WSDL 2.0 and presented a WSDL 2.0 style
template description for request-for-bid and request-
with-referral.

We compared the expressivity of MEPs in general
with other work and formalisms in the field of service
interaction. In particular, we discussed how the MEPs in
WSDL operations can be combined with the choreogra-
phy approach and introduced the idea of a choreography
providing routing information that is hosted by a middle-
ware, the service bus. This choreography-aware service
bus leads to services that are completely agnostic about
their partner services and fits nicely into the paradigm of
a loosely coupled system. Such a service bus is part of
our future work. Based on a detailed description we gave
a refined definition of MEPs suited for both conventional
use (i.e. partner information pushed to the interfaces)
and using a choreography aware service bus.

Even though we extended the template for defining
MEPs, it is still not precise enough to actually define
a contract between two or more parties. Patterns with
optional messages are under-defined because it does not
define how the service behaves, i.e. if there is a certain
period the service waits for the message or fault. For that
reason and the current template being not well suited
for describing more complex patterns a more expres-
sive formalism is needed to define MEPs precisely and
unambiguously. This is part of our future work.

References

[1] A. Alves et al. Web Services Business Process Execution
Language Version 2.0. Committee specification, OA-
SIS Web Services Business Process Execution Language
(WSBPEL) TC, 2007.

[2] A. Barros et al. Service Interaction Patterns. In 3rd Inter-
national Conference on Business Process Management
(BPM), 2005.

[3] A.Lewis. Web Services Description Language (WSDL)
Version 2.0: Additional MEPs. W3C Note, 2007.

[4] D. A. Chappell. Enterprise Service Bus. O’Reilly, 2004.

[5] D.Box etal. Web Services Addressing (WS-Addressing).
W3C Member Submission, 2004.

[6] E. Christensen et al. Web Services Description Language
(WSDL) 1.1. W3C Note, 2001.

[7] F. Leymann. The (Service) Bus: Services Penetrate Ev-
eryday Life. In 3rd International Conference on Service
Oriented Computing (ICSOC), 2005.

[8] G. Decker et al. An Introduction to Service Choreogra-
phies. In it special issue on Service-Oriented Architec-
tures. Oldenbourg Wissenschaftsverlag, 2008. (to ap-
pear).

[9] G. Hohpe et al. Enterprise Integration Patterns: De-
signing, Building, and Deploying Messaging Solutions.
Addison-Wesley Longman, 2003.

[10] J. M. Zaha et al. Let’s Dance: A Language for Service
Behavior Modeling. In /4th International Conference on
Cooperative Information Systems (CooPiS), 2006.

[11] 7. Nitzsche et al. BPELYM. In 5¢h International Confer-
ence on Business Process Management (BPM), 2007.

[12] K. Ballinger et al. Basic Profile Version 1.2. 2007.

[13] M. Gudgin et al. SOAP Version 1.2 Part 1: Messaging
Framework. W3C Recommendation, 2007.

[14] N. Kavantzas et al. Web Services Choreography Descrip-
tion Language Version 1.0. W3C Candidate Recommen-
dation, 2005.

[15] O. Kopp et al. BPEL4Chor: Extending BPEL for Model-
ing Choreographies. In 6th International Conference on
Web Services (ICWS), 2007.

[16] Object Management Group. Business Process Modeling
Notation (BPMN) Version 1.1. 2008.

[17] R. Chinnici et al. Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language. W3C Rec-
ommendation, 2007.

[18] R. Chinnici et al. Web Services Description Language
(WSDL) Version 2.0 Part 2: Adjuncts. W3C Recommen-
dation, 2007.

[19] S. Burbeck. The Tao of e-Business Services. IBM Cor-
poration, 2000.

[20] S. Parastatidis et al. SOAP Service Description Language
(SSDL), 2005.

[21] S. Weerawarana et al. Web Services Platform Archi-
tecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall
PTR Upper Saddle River, NJ, USA, 2005.

