
Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,vanlessen,nitzsche}@iaas.uni-stuttgart.de

The Need for a
Choreography-aware Service Bus

Oliver Kopp, Tammo van Lessen, Jörg Nitzsche

@inproceedings{ChorAwareESB,

author = {Kopp, Oliver and van Lessen, Tammo and Nitzsche, J\”{o}rg},
title = {The Need for a Choreography-aware Service Bus},

booktitle = {The 3rd European Young Researchers Workshop on Service Oriented

Computing (YRSOC 2008)},

year = {2008},

pages = {30-36}

}

:

Institute of Architecture of Application Systems

The Need for a
Choreography-aware Service Bus?

Oliver Kopp, Tammo van Lessen, and Jörg Nitzsche

Institute of Architecture of Application Systems
University of Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany
{oliver.kopp,tammo.van.lessen,joerg.nitzsche}

@iaas.uni-stuttgart.de
http://www.iaas.uni-stuttgart.de

Abstract Choreographies offer means to describe the long-running col-
laboration of business partners. Such descriptions can be used to create
new participant processes which comply to the overall choreography
or to check whether participating processes conform to the protocol.
In addition, choreography descriptions allow for asserting whether a
completed cross-organizational conversation has been compliant to the
planned choreography. However, choreography descriptions have so far
not been used during execution but only during design time. Therefore,
it is not yet possible to immediately detect protocol violations and to
instantly handle such violations. In this paper we motivate the need
of a Choreography-aware Service Bus which is capable of tracking the
soundness of cross-organizational conversations while they are running.
This fosters a novel notion of exception handling in the context of chore-
ographies.

Key words: Compliance, Choreography, Service Bus

1 Introduction

Choreographies offer means to describe the collaboration of business partners.
They can be modeled by (i) interconnection models or (ii) interaction models.
An interconnection model captures the observable behavior of each participant
in a choreography. It defines a “network of bilateral interactions”, i.e. it defines
for each participant in which order it has to send and receive messages to
and from its partner services. BPMN [1] and BPEL4Chor [2] are languages to
express choreographies by interconnection models using sending and receiving
activities. An interaction model defines an ordering of process interactions from
? The work published in this article is funded by the SUPER project under the EU

6th Framework Programme Information Society Technologies Objective (contract no.
FP6-026850, http://www.ip-super.org/) and the Tools4BPEL project, which in
turn is funded by the German Federal Ministry of Education and Research (project
no. 01ISE08).

2 Oliver Kopp, Tammo van Lessen, and Jörg Nitzsche

a global point of view, i.e. it defines a process “in the middle” that captures the
interactions of all participants. Current languages providing interaction models
are Let’s Dance [3] and WS-CDL [4].

In case an interaction model was used to model the choreography, the behav-
ioral description of the participants can be generated. When using an interconnec-
tion model, they are already available. These descriptions can be used to either
find appropriate participants via conformance checking, or to implement new ones.
When a choreography is executed, the choreography itself does not get executed
but the participant behaviors described in the choreography are executed. That
means, the choreography as an artifact is not used during execution. Since there
are constraints that cannot be transformed into local behavior, not all constraints
of a choreography can be enforced [5]. An approach is to check the audit log
on whether the participants complied with the choreography specification [6].
However, if choreography execution lasts for years and an early message exchange
was wrong, it is not desirable to check this choreography violation after the last
message. It has to be possible to immediately react on faulty messages to prevent
aftereffects.

A Service Bus [7] is middleware to connect services with each other. Services
are implementations of participants. A Service Bus provides virtualization of
services and thus contributes to a loosely coupled environment. However, besides
the lack of a built-in choreography conformance checking, the bus so far does not
offer a possibility for a service to register as participant of a choreography and
participant virtualization. Such a registration allows for an automatic binding
of participants to a choreography. Therefore we propose to make a Service Bus
choreography-aware, i.e. to extend it with choreography specific features. For
instance, choreography based discovery and conformance checking, which enables
the bus to react to violations of the choreography specification in “realtime”.

The remainder of the paper is structured as follows: Section 2 shows the
state of the art in choreography implementation and describes the limitations of
traditional Service Bus when employed for execution. The idea of a Choreography-
aware Service Bus is presented in section 3. Section 4 presents related work and
section 5 concludes the paper.

2 Limitations of a Traditional Service Bus

Figure 1 presents a sample choreography for investments. A client talks to a
financial adviser. The adviser recommends an investment and hands out the
requested information material. The government requires to give the customer
at least 24 hours to decide on the investment. After 24 hours have passed, the
customer may sign the contract. It is not allowed to receive a signature from the
customer beforehand.

One approach to implementing a choreography is to transform the choreog-
raphy to orchestrations [8]. In contrast to a choreography which describes the
interaction of all participants from a global view, an orchestration implements
the behaviour of a single participant. The Business Process Execution Language

The Need for a Choreography-aware Service Bus 3

Fi
na

nc
ia

l
Ad

vi
so

r
C

us
to

m
er

Send
Investment
Propposal

24h passed

Accept

Reject

Figure 1. Process of investment offers

(BPEL, [9]) is the de facto standard to describe Web Service orchestrations.
Figure 2 presents the steps required to derive executable BPEL processes from a
choreography descriptions. These steps are independent from the choreography
language chosen. First, the behavior of each participant in the choreography is
mapped to an abstract BPEL process. For each participant, the BPEL process
is enriched with technical details, such as message types, variables and internal
behavior to get an executable BPEL process. These processes then need to be
deployed to an infrastructure.

Figure 3 illustrates the scenario for the case in which a traditional Service
Bus is used. The Service Bus routes the messages to the corresponding process
instance. Each workflow engine generates audit logs. These logs can then be used
to check whether the sent messages conform to the choreography. However, a
wrong message cannot be held back. If the customer accepts after 12 hours, the
bank may continue with the investment. The bank could automatically debit the
current account of the customer, transfer the invested money to a third party,
etc. If an error is detected by the monitoring application, it could send a message
to the bank and exception handling begins. For instance, money transfer has to
be compensated.

A crucial point in choreography design is the “local enforceability”. A locally
enforceable choreography is defined as follows: “The global model can be mapped
into local ones in such a way that the resulting local models satisfy the following
two conditions: (i) they contain only interactions described in the global model;

Choreography

Generation
One

Abstract BPEL
per Participant

Executable
Completion

Orchestration

C
us

to
m

er

Send
Investment
Propposal

24h passed

Accept

Reject

Figure 2. From Choreography to Orchestration

4 Oliver Kopp, Tammo van Lessen, and Jörg Nitzsche

Runtime

Auditlog
Auditlog

Monitoring matches?

ESB

Send
Investment
Propposal

24h passed

Accept

Reject

Figure 3. Infrastructure realized with a traditional Service Bus

and (ii) they are able to collectively enforce all the constraints expressed in
the global model.” [5]. A locally unenforceable choreography is presented in
Figure 4: Sender A sends a message to B. Afterwards C sends a message to D.
The interaction from C to D must happen after the interaction from A to B. It
is not possible to globally enforce a choreography using a traditional Service Bus.
The choreography has to be modified to be locally enforceable.

A B C D

Figure 4. Locally unenforceable choreography [5]

3 Choreography-aware Service Bus

In contrast to the traditional approach, a Choreography-aware Service Bus
checks each message to route whether it conforms to the choreography. Figure 5
presents the infrastructure when using a Choreography-aware Service Bus. The
choreography-conformance checking is built in: If a message conforms to the
choreography, it is routed as in a traditional Service Bus. If a message does not
conform to the choreography, the Service Bus does not route the message to the
recipient. That means, the wrong message does not trigger any further processing.
The bank does not automatically debit the giro account, does not transfer the
invested money to a third party, etc.

In general, there are several options to treat a wrong message:

1. Move the message to a dead letter queue
2. Notify the sender that it violated the choreography
3. Trigger default exception handling
4. Trigger a pre-defined exception handling
5. Enforce the choreography

The Need for a Choreography-aware Service Bus 5

Auditlog Auditlog
matches?

Choreography-
aware ESB

Send
Investment
Propposal

24h passed

Accept

Reject

Figure 5. Infrastructure realized with a Choreography-aware Service Bus

Exception handling can include stopping the whole choreography. Another ex-
ception handling approach is to only disable messages, which are related to the
wrong message. The last option (5) is not applicable in all cases: If the customer
agrees too early, the Service Bus can technically hold the message back and
resend the message later. However, this is not the intended behavior. In the case
of the unenforceable choreography presented in Figure 4, the message sent from
C to D can be hold back until the message from A to B has been sent.

4 Related Work

Usually the term “choreography” is used for models decribing the global behaviour
of multiple participants. However, sometimes the term “choreography” is used
to describe the behavioural interface of a single service, like for instance used
in the Web Service Modelling Ontology (WSMO, [10, 11]). The Web Service
Modelling eXecution environment (WSMX, [12]) is the reference implementation
for WSMO and contains a so called “choreography engine”. This choreography
engine, however, only supports bilateral message exchanges, i.e. choreographies
involving multiple participants are not taken into account.

An overview of languages that enable modelling choreographies involving
multiple participants is given in [8]. The service interaction patterns can be used
to determine the kinds of service interactions a choreography language supports.
While BPEL4Chor and Let’s Dance have full support for a priori unknown
sets of participants, the possible participants have to be known in advance in
WS-CDL [13]. For example, a request-for-bid scenario with a priori unknown
bidders cannot be modeled using WS-CDL.

Verification techniques are available for BPEL4Chor [14], BPMN [15,16], Let’s
Dance [17] and WS-CDL [18]. The verifications ensure that the choreographies are
deadlock free or satisfy given properties. The given properties may originate from
compliance requirements. Thus, the approaches ensure that the choreography is
compliant but do not deal with the realization of a choreography. If a choreography
is compliant, a Choreography-aware Service Bus ensures that the participants in
that choreography behave according to the choreography and thus are compliant,
too.

6 Oliver Kopp, Tammo van Lessen, and Jörg Nitzsche

There are various methods to check conformance between a choreography
and orchestrations at design time [19–23]. The drawback of these methods is
that at least the behavior description, e.g. expressed in abstract BPEL, of
the used services has to be available. If that is not possible, e.g. for services
of other companies, the approaches cannot prove whether the opaque service
implementation adheres to the choreography specification.

[5, 24] present methods for mapping choreographies to participants such that
the participants conform to the choreography. While [24] proposes to ignore
unenforceable constraints, [5] requests to reject a choreography which is not
enforceable. [25] presents an approach to check whether a choreography is locally
enforceable.

Since it is not possible to ensure at runtime that a service implementation
conforms to the choreography, runtime monitoring is desirable. [6] presents an
approach, where the monitoring data is used to determine whether an obligation
has been carried out successfully. The determination is carried out after the
execution of the choreography. We presented an approach to ensure conformance
at runtime and to prevent false message exchanges.

5 Conclusion and Outlook

We presented how choreography conformance can be realized using a traditional
Service Bus. We showed that messages not following the choreography require-
ments are routed to their destination. A solution is to check the audit logs and
to start exception handling if a wrong message was sent.

To overcome the shortcomings of a traditional Service Bus, we presented
the concept of a Choreography-aware Service Bus. Using a Choreography-aware
Service Bus, messages not compliant to the choreography are not routed to the
recipient, but handled in other ways.

Our ongoing work is to evaluate whether existing choreography languages are
suitable to be used in a Choreography-aware Service Bus and if there is a need
to extend them to specify exceptional behavior.

References

1. OMG: Business Process Modeling Notation, V1.1. OMG Available Specification,
Object Management Group (2008)

2. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
Modeling Choreographies. In: ICWS 2007

3. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s Dance: A Language for
Service Behavior Modeling. In: CooPIS 2006. LNCS

4. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0. W3C Candidate Recommendation, W3C (2005)

5. Zaha, J.M., Dumas, M., ter Hofstede, A.H., Barros, A., Decker, G.: Service
Interaction Modelling: Bridging Global and Local Views. EDOC 2006

6. Sailer, M., Morciniec, M.: Monitoring and Execution for Contract Compliance.
Technical Report HPL-2001-261, Hewlett Packard Laboratories (2001)

The Need for a Choreography-aware Service Bus 7

7. Leymann, F.: The (Service) Bus: Services Penetrate Everyday Life. In: ICSOC
2005. LNCS

8. Decker, G., Kopp, O., Barros, A.: An introduction to service choreographies.
Information Technology 50(2/2008) (2008)

9. OASIS WS-BPEL TC: Web services business process execution language version
2.0. Technical report, OASIS (2007)

10. Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology (WSMO).
W3C Member Submission 3 (2005)

11. Roman, D., Scicluna, J., Nitzsche, J.: D14 V 1.0: Ontology-based Choreography
(2007) http://www.wsmo.org/TR/d14/v1.0/.

12. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A semantic
service-oriented architecture. ICWS 2005

13. Decker, G., Overdick, H., Zaha, J.M.: On the Suitability of WS-CDL for Choreog-
raphy Modeling. In: EMISA 2006. LNI

14. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-
cation and Participant Synthesis. In: WS-FM 2007. LNCS

15. Puhlmann, F., Weske, M.: Investigations on Soundness Regarding Lazy Activities.
In: BPM 2006. LNCS

16. Ghose, A., Koliadis, G.: Auditing business process compliance. In: ICSOC 2007
17. Decker, G., Zaha, J.M., Dumas, M.: Execution Semantics for Service Choreographies.

In: WS-FM 2006. LNCS
18. Flavio Corredini, Francesco De Angelis, A.P.: Verification of WS-CDL choreogra-

phies. In: YR-SOC 2007
19. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and

Orchestration Conformance for System Design. In: COORDINATION 2006. LNCS
20. Li, J., Zhu, H., Pu, G.: Conformance Validation between Choreography and

Orchestration. In: TASE 2007
21. Hongli, Y., Xiangpeng, Z., Chao, C., Zongyan, Q.: Exploring the Connection of

Choreography and Orchestration with Exception Handling and Finalization/Com-
pensation. In: FORTE 2007. LNCS

22. M.Bravetti, Zavattaro, G.: Towards a Unifying Theory for Choreography Confor-
mance and Contract Compliance. In: 6th International Symposium on Software
Composition (SC’07). LNCS

23. Aalst, W., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.M.W.: Choreography
conformance checking: An approach based on BPEL and petri nets (extended
version). BPM Center Report BPM-05-25, BPMcenter.org (2005)

24. Mendling, J., Hafner, M.: From Inter-organizational Workflows to Process Execution:
Generating BPEL from WS-CDL. In: MIOS 2005

25. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: BPM
2007. LNCS

All links were last followed on May 8, 2008.

http://www.wsmo.org/TR/d14/v1.0/

	Lecture Notes in Computer Science
	Authors' Instructions
	cover-Springer.pdf
	Slide Number 1

